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Abstract This paper presents a variety of conjugated
derivatives with different number of arms (4-styryl-
triphenylamine: C1, 4, 4′-di-styryltriphenylamine: C2, 4,
4′, 4″-tri-styryltriphenylamine: C3). The linear absorption
and fluorescence maxima and the molar extinction
coefficients are in the order of C1<C2<C3 in various
solvents. Two-photon absorption (TPA) up-converted
emission of the derivatives were determined with Ti:
sapphire femtosecond laser. The maximal TPA emission
wavelength and the two-photon absorption cross section of
the derivatives are also in the order of C1<C2<C3 in various
solvents. The dipole moment changes of the derivatives
between the excited state and the ground state were
estimated from experiment, and they are in the order of
C1<C2<C3, which is confirmed further by the molecular
geometry optimization of the derivatives. The electron density
distribution and the energy levels of the frontier orbital of the
derivatives were analyzed. The cyclic voltammograms of the
derivatives were performed and discussed.

Keywords Synthesis . Optical properties . Molecular
geometry optimization . Branch effect . Conjugation

Introduction

In recent years, one of the central themes in organic and
material chemistry is to develop highly fluorescent and
two-photon absorption (TPA) dyes due to their wide

applications such as two-photon fluorescence sensors [1,
2], two-photon biomarkers [3, 4], two-photon imaging
reagents [5, 6], two-photon photodynamic therapy [7, 8]
and non-linear optical materials [9, 10]. An ideal dye
should have excellent spectral characteristics such as high
fluorescence quantum yield, large molar extinction coeffi-
cient and remarkable TPA cross section in the red-NIR range
(700–1200 nm), hence this could guarantee the use of lower
concentrations of the sample in applications, which stimulates
the development of new two-photon compounds with large
TPA cross sections [11–18], which normally have typical
phenylvinyl chemical structures with donor-π-donor, donor-
π-acceptor and donor-acceptor-donor characteristics.

Many branched compounds containing various electron-
donating or accepting groups in the conjugated arms were
reported, and the optical characteristics were found to be
related to the molecular structures [19, 20]. While to date,
the branched conjugated two-photon dyes without push-
pull groups have not been explored well. It is surprise
because such molecules could show clearly branch effect
on the optical properties of the armed derivatives. Such
investigation is very necessary because the results could
help us on the development of novel optical materials.
Consequently, we develop new fluorescent derivatives
containing only core and phenyl ring, which means that
no electron-donating or accepting groups are located in the
arms of the derivatives, thus the substituent effect could be
eliminated. This paper presents the synthesis of 4-styryl-
triphenylamine (C1), 4, 4′-di-styryl–triphenylamine (C2)
and 4, 4′, 4″-tri-styryl–triphenylamine (C3) (Fig. 1). Of its
particular interest is trying to investigate pure branch effect
on the optical properties (one- and two- photon). The
molecular geometry optimization and the electrochemistry
of the derivatives were studied to reveal further the deep
reasons for the different optical properties.
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Experimental

Reagents and Materials

Organic solvents were obtained from Chongqing Medical
and Chemical Corporation. Other chemicals and reagents
were purchased from Aldrich unless otherwise specified.
The organic solvents were dried using standard laboratory
techniques according to the published methods [21]. The
starting materials were further purified with redistillation or
recrystallization before use. The derivatives C1 to C3
(Fig. 1) were synthesized in our laboratory, and C2 and C3
were firstly reported.

Instruments

The UV/visible absorption spectra (1×10−5 mol/L) were
recorded with a Cintra spectrophotometer. The emission
spectra (1×10−5 mol/L) were checked with Shimadzu RF-
531PC spectrofluorophotonmeter. Rodamin 6G in ethanol
(Φ=0.94, 1×10−6–1×10−5 mol/L) was used as reference to
determine the fluorescence quantum yields of the com-
pounds herein [22, 23]. To avoid self-quenching of
fluorescence emission, the low concentration of the com-
pounds (1×10−6 mol/L) was prepared for the survey of
fluorescence quantum yields. The melting point was
determined using a Beijing Fukai melting point apparatus.
Nuclear magnetic resonance (NMR) spectroscopy was
conducted at room temperature on a Bruker 500 MHz
apparatus with tetramethylsilane (TMS) as an internal
standard and CDCl3 as solvent. Elemental analysis was
performed by a CE440 elemental analysis meter from
Exeter Analytical Inc.

The fluorescence quantum yields of the compounds in
solvents with different polarities were measured based on
the following equation [24, 25]:

Φf ¼ Φ0
f
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0
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wherein n0 and n are the refractive indices of the solvents,
A0 and A are the optical densities at excitation wavelength,

Φf and Φf
0 are the quantum yields, and the integrals denote

the area of the fluorescence bands for the reference and
sample, respectively.

Two-photon excited fluorescence spectra, pumped by Ti:
sapphire femto-second laser (Spectra-Physics Ltd., Tsunami
mode-locked, 80 MHz, <130 f s, average power ≤700 mW)
tuned by step of 20 nm in the range of 700~880 nm, were
recorded on Ocean Optics USB2000 CCD camera with
detecting range of 180~880 nm. TPA cross-section (σ) was
determined by up-conversion fluorescence method using
5×10−4 mol/L fluorescein in 0.1 mol/L solution of NaOH
as reference sample [26]. The sample was bubbled with
nitrogen for 15 min to eliminate oxygen before the
detection. TPA cross sections of the compounds were
determined by the following equations [27]:

s ¼ sTPE

ΦF
ð2Þ

sTPE ¼ sTPE
cal
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ncal
n
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Wherein σ is two-photon absorption section, σTPE is
two-photon excited crossing section, c is the concentration
of reference and sample molecules, n is refractive index of
the solvent, and S is two-photon up-conversion fluores-
cence intensity, cal represents as reference.

Molecular Geometry Optimization

Molecular geometry optimization was conducted with the
HyperChem 8.0 package [28] via AM1 semi-empirical
quantum chemical method to keep the computations tractable
[29].

Cyclic Voltammograms

Cyclic voltammograms was carried out using a Shanghai
Chenhua electrochemical working station. Two Pt work electro-
des and anAg/Ag+ reference electrode, namely three electrodes
system, were included in cell. Typically, a 0.05 mol/L solution
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Fig. 1 Chemical structures of
the derivatives studied in this
paper
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of tetra-n-butylammonium hexaflorophosphate in CH2Cl2
containing of dyes was bubbled with argon for 15 min.

Synthesis

The synthesis of the derivatives was depicted in
Scheme 1. 4-Formyl-triphenylamine and 4′,4″-diformyl-
triphenylamine, 4′,4″,4‴—triformyl-triphenylamine were
prepared according to well-known procedures with mod-
ified procedure respectively [30]. Benzyl bromide
(17.5 mmol, 3.00 g) reacted with triethyl phosphite
(10 ml) under 130–160 °C for 6 h. After excess triethyl

phosphite was removed in vacuum, the crude benzyl-
phosphonate was obtained, which directly went to the next
step without further purification.

(1) C1: 4-styryl-triphenylamine

Benzylphosphonate (8.77 mmol, 2.00 g) reacted with 4-
formyl-triphenylamine (7.31 mmol, 2.00 g) in 50 ml dry
tetrahydronfuran using sodium methoxide (17.5 mmol,
0.98 g) as base at room temperature overnight. After the
filtration of solid materials and the evaporation of solvent in
vacuum, the reactant mixture was dissolved in chloroform
and washed by water. The organic layer was dried with
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anhydrous magnesium sulphate. After evaporated in vacu-
um, C1 was purified with column chromatography using
benzene as eluent, which was further purified with
recrystallization in cyclohexane. C1: color: yellow, yield:
60%, m.p.: 141–142 °C, 1H-NMR (CDCl3, 500 MHz)

δ(ppm): 7.532–7.548(d, 2H, J=8.0 Hz, Ar-H), 7.428–7.448
(d, 2H, J=10.0 Hz, Ar-H), 7.377–7.412 (t, 2H, J=7.75 Hz,
Ar-H), 7.283–7.325 (m, 4H, Ar-H), 7.269 (s, 1H, Ar-H),
7.156–7.172 (d, 2H, J=8.0 Hz, Ar-CH = CH), 7.129 (s, 2H,
Ar-H), 7.029–7.118(m, 6H, Ar-H). 13C-NMR (CDCl3,
125 MHz): 123.077, 123.658, 124.534, 126.368, 127.335,
127.417, 128.230, 128.710, 129.340, 137.679, 147.411,
147.610. Anal. Calcd (Found) for C26H21N (%): C, 89.81
(89.89), H, 6.15 (6.09), N, 4.06 (4.01).

(2) C2: 4,4′-di- styryl -triphenylamine

Benzylphosphonate (8.77 mmol, 2.00 g) reacted with
4,4′-diformyl-triphenylamine (3.65 mmol, 1.10 g,) in 60 ml
dry tetrahydronfuran using sodium methoxide (17.5 mmol,
0.98 g) as base at room temperature overnight. After the
filtration of solid materials and the evaporation of solvents
in vacuum, the reactant mixture was dissolved in chloro-
form and washed by water. The organic layer was dried
with anhydrous magnesium sulphate. After evaporated in
vacuum, C2 was purified with column chromatography
using benzene as eluent, which was further purified with
recrystallization in cyclohexane. C2: color: yellow, yield:
40%, m.p.: 152–153 °C. 1H-NMR(CDCl3, 500 MHz)
δ(ppm): 7.487–7.504 (d, 4H, J=8.5 Hz, Ar-H), 7.390–
7.415 (d, 4H, J=12.5 Hz, Ar-H), 7.330–7.361 (t, 4H, J=
7.7 Hz, Ar-H), 7.223–7.293 (m, 5H, Ar-H), 7.127–7.147 (d,
2H, J=10.0 Hz, Ar-H), 7.072–7.094 (d, 4H, J=11.0 Hz,
Ar-H), 7.025–7.076 (t, 4H, J=12.7 Hz, Ar-H), 13C-NMR
(CDCl3, 125 MHz): 123.363, 123.975, 124.763, 126.353,
127.273, 127.352, 127.430, 128.129, 128.686, 129.379,
131.901, 137.605, 147.039, 147.039. Anal. Calcd (Found)
for C34H27N (%): C, 90.90 (90.87), H, 6.01 (6.13), N, 3.13
(3.09).

(3) C3: 4,4′,4″-tri- styryl -triphenylamine

Benzylphosphonate (8.77 mmol, 2.00 g) reacted with
4,4′,4″-triformyl-triphenylamine (2.92 mmol, 0.96 g,) in
60 ml dry tetrahydronfuran using sodium methoxide
(17.5 mmol, 0.98 g) as base at room temperature overnight.
After the filtration of solid materials and the evaporation of
solvents in vacuum, the reactant mixture was dissolved in
chloroform and washed by water. The organic layer was
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Fig. 2 Typical UV/visible absorption spectroscopy of C1 to C4 in
benzene (c: 1×10−5 mol/L) a Real spectroscopy, b Normalized
Spectroscopy

Compounds Solvents

Benzene THF EtOAc CH2Cl2 CH3CN

C1 10−5ε 0.279 0.339 0.320 0.364 0.322

λa,max 363 364 358 366 358

C2 10−5ε 0.430 0.435 0.437 0.439 0.451

λa,max 384 382 379 385 379

C3 10−5ε 0.760 0.970 0.689 0.750 0.715

λa,max 390 388 386 390 387

Table 1 Maximal absorption
wavelength (λa,max, nm) and the
molar extinction coefficients (ε)
of the derivatives

ε: mol−1 ·lcm−1

548 J Fluoresc (2011) 21:545–554



dried with anhydrous magnesium sulphate. After evaporat-
ed in vacuum, the crude 4-formyl-4′,4″-di-styryl–triphenyl-
amine (C8) was purified with column chromatography
using benzene as eluent, which was further purified with
recrystallization in cyclohexane. C8: color: yellow, yield:
52%, m.p., 94–95 °C. 1H-NMR (CDCl3,500 MHz) δ(ppm):
7.696–7.723(d, 2H, J=13.5 Hz, Ar-CHO), 7.494–7.515(d,
4H, J=10.5 Hz, Ar-H), 7.466–7.488(d, 4H, J=11.0 Hz, Ar-
H), 7.342–7.373(t, 4H, J=7.75 Hz, Ar-H), 7.245–7.274(t,
2H, J=7.25 Hz ,Ar-H), 7.139–7.165(d, 4H, J=13.0 Hz, Ar-
CH = CH), 7.043–7.116(t, 6H, J=18.3 Hz, Ar-H).

Benzylphosphonate (8.77 mmol, 2.00 g) reacted with
4-formyl-4′,4″-di-styryl –triphenylamine (C8) (7.31 mmol,
3.49 g) in 60 ml dry tetrahydronfuran using sodium
methoxide (17.5 mmol, 0.98 g) as base at room temper-
ature overnight. The reactant mixture was processed in the
same procedure as C2 to obtain C3. C3: color: yellow,
yield: 35%, m.p. >300 °C. 1H-NMR (CDCl3,500 MHz)
δ(ppm): 7.507–7.522(d, 6H, J=7.5 Hz, Ar-H), 7.426–443
(d, 6H, J=8.5 Hz, Ar-H), 7.348–7.379(t, 6H, J=7.8 Hz,
Ar-H), 7.242–7.271(t, 3H, J=7.3 Hz, Ar-H), 7.109–7.131
(d, 6H, Ar-CH = CH), 7.020–7.077(t, 6H, J=14.3 Hz, Ar-
H). 13C-NMR (CDCl3, 125 MHz): 124.9, 126.9, 127.4,
127.9, 128.5, 128.6, 129.7,137.5, 145.1. Anal. Calcd
(Found) for C30H27NO4 (%), C, 91.13 (91.24), H, 6.13
(6.01), N, 2.74 (2.67).

Results and Discussion

Linear Optical Properties

A typical UV/visible absorption spectroscopy of C1 to C3
in benzene is presented in Fig. 2. The derivatives exhibit

double absorption peaks from 275 to 550 nm. The first
absorption peaks of the derivatives are similar to the
absorption spectroscopy of triphenylamine, indicating that
it could be from the local electron transition of triphenyl-
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Fig. 4 Two-photon induced up-conversion fluorescence emission of
the derivatives in solvents excited by 700 nm Ti: sapphire laser a C1,
C2, C3 in benzene; b C1 in benzene and THF

Table 2 Maximal linear emission wavelength (λf,max, nm) and the
quantum yields of C1 to C3

Compounds Solvents

Benzene THF EtOAc CH2Cl2 CH3CN

C1 φ 0.75 0.96 0.89 0.97 0.88

λf,max 421 436 434 443 456

C2 φ 0.86 0.80 0.76 0.69 0.39

λf,max 432 446 442 456 473

C3 φ 0.67 0.57 0.60 0.55 0.51

λf,max 441 467 462 473 483
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amine core. The second absorption peaks of the derivatives,
namely the maximal absorption peak, could be ascribed to
the (π, π*) transition [31]. The absorption spectral data of
C1 to C3 in various solvents were listed in Table 1. The
data show that the maximal absorption wavelength displays
gradual red-shift in the order of C1<C2<C3. This suggests
that the extent of internal charge transfer is related to the
number of branches. The maximal absorption wavelength
of the derivatives exhibits some bathochromic shift with the
increasing of solvent polarity, which is due to internal
charge transfer nature of (π, π*) electron transition of the
derivatives [32]. Interesting, the molar extinction coeffi-
cients of the derivatives increase with the number of arms.
Table 1 shows that the ratio of the molar extinction
coefficients of C1, C2 and C3 is close to the ratio of the
number of arms, namely 1:2:3. It could be easily under-
stood from their chemical features. C1, C2 and C3 are
characterized with D-π, D-(π)2, D-(π)3 respectively, which
results in a cooperative effect of the molar extinction
coefficients of the derivatives. Figure 3 shows a gradual
red-shift for the maximal fluorescence wavelength as
C1<C2<C3. This indicates that the order of the extent of
internal charge transfer in the excited state is C1<C2<C3.

The fluorescence quantum yields and the maximal linear
emission wavelength of the derivatives are presented in
Table 2. The data show that C1, C2 and C3 exhibit strong
fluorescence in various solvents. The emission maxima of
the derivatives shift to long wavelength in polar solvents.
This means that the fluorescence spectroscopy displays
more remarkable solvent effect than the absorption spec-
troscopy, which implies that a large internal charge transfer
occurs in the excited state.

Two-Photon Optical Properties

We observed that TPA fluorescence of the derivatives was
quenched at high concentration solution, thus 5×10−4 mol/
L sample solution was used for the TPA determination. The
derivatives display remarkable TPA emission in 700 nm Ti:
sapphire femto-second laser excitation. Figure 4(a) presents
TPA emission of these compounds under 700 nm laser in
benzene. Clearly, the maximal TPA emission exhibit
gradual red-shift in the order of C1→C2→C3. Figure 4
(b) shows the TPA fluorescence of C1 in benzene and
tetrahydrofuran (THF) at 700 nm. Obviously, the maximal
TPA emission of C1 exhibits red-shift with the increasing

Table 3 Two-photon optical data of C1 to C3 in 700 nm laser frequency

Solvents C1 C2 C3

λmax (TPA) σTPA/GM λmax (TPA) σTPA/GM λmax (TPA) σTPA/GM

Benzene 418 46.6 436 218.6 443 254.0

THF 441 57.6 462 290.7 479 288.0

λmax (TPA): nm, the maximal up-conversion fluorescence wavelength, σ: two-photon crossing section (GM, 1GM=10−50 cm·s·photo−1 )
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Fig. 5 Maximal TPA emission wavelengths of the derivatives in
benzene excited by different laser frequencies
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polarity of the solvents. Table 3 presents the maximal TPA
emission and TPA cross sections of the derivatives. The
results show that the orders of the maximal TPA emission
wavelength and TPA cross sections of the derivatives are
the same (C3>C2>C1), reflecting a cooperative branch
effect on two-photon optical properties. TPA cross sections
of the derivatives become larger with the increasing polarity
of the solvents, which could be ascribed to larger dipole
moment changes between the excited state and the ground
state caused by stronger intramolecular charge transfer in
polar solvents. It is well accepted that the larger dipole
moment changes between the ground state and the excited
state lead to not only the red-shift of the maximal TPA
emission, but the larger TPA cross section [33–35].

We also utilized different excited wavelength (700~880 nm)
to detect TPA fluorescence of the derivatives. The maximal

TPA emission wavelengths of the derivatives excited by
different laser frequencies are presented in Fig. 5. It is
interesting to observe that the maximal TPA emission of C1
is independence on the excited wavelength and it is almost
identical to one-photon maximal fluorescence wavelength,
which implies that one-photon and two-photon excited
fluorescence spectroscopy could be from the same or similar
excited state. Figure 6 shows the TPA cross sections of the
derivatives in various laser frequencies. Clearly, the TPA
cross sections are in the order C3>C2>C1 in most laser
frequencies, which reveals further the branch cooperative
effects on the two-photon optical properties. We shall point
out that the TPA cross section of C1 is very close to reported
data [36]. Herein, the relationship of TPA intensities of the he
derivatives and the pumped powers were determined further,
which follows well the square law in the 800 nm laser
excitation (Fig. 7), and the slopes of 1.916 and 1.973 for C2
and C3 respectively demonstrate that the derivatives have
excellent two-photon absorption nature [26].

Dipole Moment Changes

It is well accepted that the dipole moment changes are
related with the optical properties of organic compounds.
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Fig. 7 Square relationships between TPF (TPA fluorescence)
intensity of the derivatives and the excited laser powers at
800 nm a for C2, b for C3

Table 4 Changes of dipole moment between the excited state and
ground state respectively obtained from experiments and theoretical
calculations

Dipole moments change Δμ (Derby) C1 C2 C3

From experiment 2.59 3.92 4.01

From theory* 2.76 2.87 3.05

1 D=3.336×10−30 c.m, * in vacuum, for single molecule
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Fig. 8 Relationship between Stokes’ shifts of the derivatives and the
orientation polarizability (Δƒ) of solvents respectively
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We further estimated the dipole moment changes between
the excited state and the ground state based on Lippert
equation [37, 38]:

hcðnabs � nemÞ ¼
2 me � mg

� �2

4p"0a3
Δf þ const ð4Þ

Δf ¼ "� 1

2"þ 1
� n2 � 1

2n2 þ 1

� �
ð5Þ

Wherein h is Planck’s constant, c is the speed of light,
and Δƒ is called the orientation polarizability. υabs, υem are
the wavenumbers of the absorption and emission respec-
tively, n is the refractive index, and ε is the relative low-
frequency dielectric constant of the solvents. The chromo-
phore group is considered as a dipole, which locates in a
cavity with a radius of a in a continuous solvent-dipole
environment, and Lippert equation describes a solvent

effect of the index of refraction and relative dielicetric
constant. As a consequence, the linear correlation between
Stokes shifts and Δƒ does not reflect some special
interaction between the fluorophore and solvent molecules
such as hydrogen bonding.

Plots of Stokes shift as a function of the solvent orientation
polarizability (Δƒ) are shown in Fig. 8. The linear
correlations between Stokes shift and orientational polariz-
ability reflects the dipolar solvent effects. The equations are
obtained as: C1, Y=7402.6X+3454.2, C2, Y=7760.3X+
2538.1, C3, Y=8069.3X+2630.3. Thus, the dipole moment
changes between the excited state and the ground state are
calculated from the slopes and listed in Table 4. The order of
the dipole moment change are C3>C2>C1, which demon-
strates that the extent of internal charge transfer in the
excited state is greatly influenced by the number of arms.
The dipole moment changes between the excited state and
ground state were further calculated theoretically on the basis
of molecular geometry optimization. Table 4 shows that the
theoretical results are good agreement with the experimental
results.

As shown in Fig. 9, the derivatives have typical (π, π*)
character, while they exhibit different electron distribution
in frontier orbitals. Seen from Fig. 9, for the HOMO
orbitals of the derivatives, the electron density is mainly
distributed around N-core. While for the LUMO orbital of
the derivatives, the majority of the electron density
distribution is located at diphenylehylene part. Thus, it is
obvious that the majority of the electron density distribution

Table 5 Energy gaps of HOMO and LUMO of the derivatives
obtained from theoretical calculations

Derivatives EHOMO (eV) ELUMO (eV) Energy gap (eV)

C1 −7.861 −0.4531 7.4079

C2 −7.793 −0.5585 7.2345

C3 −7.744 −0.5782 7.1658

Table 7 Estimated HOMO and LUMO energies of compounds 1 to 3
from cyclic voltammograms

Compounds λonset (nm) Eg (eV) ELUMO (eV) EHOMO (eV)

C1 408.0 3.04 −5.45 −8.49
C2 424.8 2.92 −5.48 −8.40
C3 431.2 2.88 −5.50 −8.38

Eg=1240/λ, LUMO(eV) = −EOX −4.34 [41, 42], HOMO(eV) = LUMO–
Eg , λonset:the longest absorption wavelength at ten percent of the maximal
UV peak

Table 6 The redox potentials of compounds C1 to C3 determined in
methylene chloride at 0.1 V·s−1scan rate

Compounds Oxidation potentials (V) Reduction potentials (V)

C1 1.11/0.90 0.53/−0.13
C2 1.14/0.72/0.34 0.74/0.49/−0.17
C3 1.16 0.71/−0.14/−0.80
C4 1.03 0.42/−0.26/−0.57

HOMO LUMO

C1 

C2 

C3 

Fig. 9 Electron density distributions of frontier orbital ofC1, C2 and C3
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for C1 is in one arm in LUMO, and two arms have the most
of electron density distribution in LUMO of C2, and the
electron density is distributed in three arms in LUMO of
C3. As a consequence, the charge delocalization of frontier
orbitals of the derivatives are in the order of C3>C2>C1.
The theoretical HOMO-LUMO energy of the derivatives
were further calculated, and the results are listed in Table 5,
which shows that the order of HOMO-LUMO gap is
C1>C2>C3. The results show that the not only the electron
density distribution and the dipole moment changes of the
excited state and the ground state could be tuned by the
numbers of arms, but the energy gaps of the frontier orbital
could be regulated. The results explain the gradual red-shift
of absorption and fluorescence spectroscopy of C1, C2 and
C3. This also interprets why the maximal TPA fluorescence
wavelength and TPA cross section of the derivatives are
related to the number of arms.

Cyclic voltammograms of the derivatives were acquired at
various scan rates from 50 to 200 mV·s−1. No corresponding
potentials demonstrate that redox processes of the derivatives
are characterized with irreversible nature under all sweeping
rates. The linear increasing of peak currents with the square
root of scan rates indicates that the electron transfer reactions
are controlled by the solvent diffusion [39]. Table 6 presents
the redox potentials of C1 to C4 at 0.1·V·s−1scan rate.
Obviously, the first oxidation-reduction potentials of C1 to
C3 could be assigned to N-core. We further estimated
HOMO-LUMO gap based on the optical band gap (Eg),
which was calculated from the onset of the longest
absorption wavelength at ten percent of the maximal UV
peak [40], and the results are presented in Table 7. It clearly
shows the HOMO energy of the derivatives is in the order of
C3>C2>C1, while LUMO energy is the order of
C1>C2>C3, HOMO-LUMO gap is tuned efficiently by the
number of branches. It interpreters well why one and two-
photon optical properties of the derivatives have a close
relationship with the number of arms.

Conclusions

This paper describes strong evidences that one- and two-
photon optical properties of conjugated derivatives are
affected by the number of arms. The molecular geometry
optimization demonstrates that the electron density distri-
bution of the frontier orbital and the dipole moment
changes are related to the number of branches of deriva-
tives. The theoretical and experimental results reflect that
not only the energy level of the frontier orbital could be
mediates by the number of arms, but HOMO-LUMO gap
could be regulated. These could be the deep reasons of
branch effect on the optical properties of the derivatives.
The results presents in this article would be great interest in

the development of new branched dyes with required one-
and two- optical properties.
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